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The grand potential P(z)/kT of the cluster model at fugacity z, neglecting inter- 
actions between clusters, is defined by a power series Y~, Q,z", where Q,,  which 
depends on the temperature T, is the "partition function" of a cluster of size n. 
At low temperatures this series has a finite radius of convergence z,. Some 
theorems are proved showing that if Q,,  considered as a function of n, is the 
Laplace transform of a function with suitable properties, then P(z) can be 
analytically continued into the complex z plane cut along the real axis from z, 
to +oo and that (a) the imaginary part of P(z) on the cut is (apart from a 
relatively unimportant prefactor) equal to the rate of nucleation of the corre- 
sponding metastable state, as given by Becker-Dfring theory, and (b) the real 
part of P(z) on the cut is approximately equal to the metastable grand potential 
as calculated by truncating the divergent power series at its smallest term. 

KEY WORDS:  Metastability; asymptotic expansions; analytic continuation; 
cluster model; complex fugacity plane; lattice gases. 

1. INTRODUCTION 

Lars Onsager used to tell a story about a glycerine factory somewhere in 
Canada. One winter it was so cold that the glycerine froze, and from then 
on no matter how thoroughly the place was cleaned it was impossible to 
get rid of all the nuclei of solid glycerine. As a result, it was no longer 
possible to produce glycerine in the usual (metastable) liquid phase. "They 
had to close the factory," he would say with his impish grin. 

One of the approaches that has been tried toward obtaining a theory 
of metastability uses the idea that the thermodynamic functions of a 
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metastable state might be obtained by analytic continuation from the 
neighboring stable state. This idea was already implicit in Maxwell's work 
on metastability for a substance obeying the van der Waals equation of 
state, t~5~ For temperatures below Tc there is a first-order phase transition, 
but the formulas for the thermodynamic functions, such as free energy and 
pressure, are not singular at the phase transition point. Maxwell assumed 
that the thermodynamic functions for metastable phases were represented 
by the same formula as the stable phases, but with different values for the 
parameters. This is equivalent (although Maxwell would not have put it 
in this way) to saying that the thermodynamic functions for metastable 
phases are analytic continuations of those for the stable phases. 

When more powerful methods than the van der Waals equation for 
studying phase transitions became available, it was found that the thermo- 
dynamic functions did have singularities at first-order phase transition 
points, and therefore the simple extrapolation used by Maxwell was not in 
fact possible. The strongest result of this nature is that of Isakov, c~LI who 
proved that for an Ising ferromagnet the free energy, considered as a 
function of the magnetic field H at some fixed temperature T, is infinitely 
differentiable but nevertheless nonanalytic. 

Nevertheless, it may be possible to extrapolate the free energy and 
other thermodynamic functions into the metastable region of the phase 
diagram by analytic continuation (or by some other method such as 
the use of asymptotic expansions). In general the functions obtained by 
analytic continuation are complex, so that their physical significance, 
particularly that of their imaginary parts, is not immediately apparent. If 
the imaginary part is small, then the real part of, say, the analytically 
continued free energy might reasonably be interpreted as the free energy of 
the metastable phase, but what can the imaginary part mean? In quantum 
physics, there is  (17'24) a simple connection between the imaginary part of an 
analytically continued energy and the lifetime of an unstable or metastable 
state. Indeed, this connection is one of the principal tools for studying 
quantum dissipative tunneling. 125) Motivated, perhaps, by such results, 
Langer "2) suggested that the imaginary part of the analytically continued 
free energy might (apart from unimportant preexponential factors) be 
equal to the nucleation rate of a metastable state in statistical mechanics. 
Langer's derivation, however, uses the approximation of replacing an 
infinite series formula for the free energy of an Ising ferromagnet by the 
corresponding integral. Since analytic continuation is a form of extrapola- 
tion, the uncontrolled errors introduced by this approximation might have 
a profound effect on the analytically continued free energy. 

More recently various authors t~6`~s'23"22"z6) have verified Langer's 
conjecture for various models, without resolving the question whether the 
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connections they find are restricted to the particular models they study or 
whether they have some more general validity. Numerical results for the 
two-dimensional Ising model also confirm the conjecture. (9) Gaveau and 
Schulman tT) give a class of examples where Langer's conjecture holds in 
some cases and breaks down in others, showing that the conjecture is not  
true in general, but the situation for more physically significant examples 
is still unclear. 

The present work concerns a model that has been widely used in the 
theory of phase transitions, the droplet or cluster model due to Bijl, 
Frenkel, and Band, whose physical justification is critically reviewed by 
Fisher. c6) It will be shown that if the "cluster partition functions" charac- 
terizing this model at a given temperature can be expressed as the Laplace 
transform of a suitable function l-see Eq. (20) below], then the imaginary 
part of the analytically continued grand potential does have the suggested 
relation to the nucleation rate of a metastable state. Moreover, it will be 
shown that the real part of this analytically continued function corresponds 
to the corresponding thermodynamic function itself for the metastable 
state, as calculated from a "restricted ensemble" in which supercritical 
clusters are forbidden. 

Our method is based on a variant of Borers method for the summa- 
tion of divergent power series. The analytic continuation can also be done 
by a direct application of Borel's method, as considered by Borgs. t3~ 

2. THE CLUSTER M O D E L  

Consider a dilute lattice gas with nearest-neighbor interactions, or 
equivalently a ferromagnet with plus boundary conditions in a strong plus 
magnetic field, so that most of the sites are vacant (plus) and only a few 
are occupied (minus). Any configuration of the lattice gas can be analyzed 
into clusters, defined as maximal connected sets of occupied sites. At low 
densities, the average concentration c, of n-site clusters is given by 

c , , = O . z " [ l + O ( z ) ]  (I) 

with the "cluster partition functions" Q,, defined by 

Q,, = ~.. yb, K) (2) 
K 

where the sum goes over all translationally inequivalent n-site clusters. 
b(K) means the number of bonds (nearest-neighbor pairs) in K. and y is 
defined by 

y = e  ~v (3) 
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where fl = 1/kT and U is minus the interaction energy of a neighboring pair 
of occupied sites. In the ease of a plane square lattice the first few cluster 
partition functions are 

Q ~ = I  

Q2=Zy 

Q3=6y  2 (4) 

Q4 = 18y 3 + y4 

The approximation Q,z" for c,,, implied by (1), is also a rigorous upper 
bound, but we shall not use this fact. 

The grand partition function can be expanded as a sum over cluster 
configurations. If we make the approximation of neglecting the interaction 
between clusters which arises because by definition they cannot overlap or 
even touch, the G P F  factorizes (see, for example, ref. 6 or ref. 10): 

~ 1  k n > ~ O  

Its logarithm divided by the number of sites, often called the grand poten- 
tial, is proportional in the thermodynamic limit to the pressure P (or, for 
an Ising ferromagnet, the free energy); this thermodynamic function is 
given by 

P/kT= ~ a.z" (6) 
n 

A standard thermodynamic formula gives the corresponding approxima- 
tion for the average density of particles as 

p = z(O/Oz) P/kT= ~" nQ,,z" (7) 
tt 

Having regard to (1), we can interpret the sum on the right of (6) as the 
total number of clusters per lattice site, and the terms of the sum in (7) 
then have their natural interpretation as the expected number of particles 
in clusters of each size. 

If there is a phase transition at fugacity zs, we expect the thermo- 
dynamic functions, and in particular the above two series, to be singular 
(though convergent) when z = zs. Since all the coefficients in the series are 
positive, the singularity nearest to the origin is at the point z = zs in the 
complex plane. 
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As an example of such behavior, consider the case of very low tem- 
perature (very large values of y). Then the clusters are approximately 

square, of side w/n. Each such square contains (if n is a perfect square) 
2 n - 2  ~ bonds, and so the coefficients Q, are roughly given by 

Q,, -~ exp #E2Un - 2U ~'-n] 

= y 2 , - 2 ~  (8) 

where y is given by (3). It can be verified from (4) that (8) gives QI and 
Q4 correctly in the large-y limit. If we use the low-temperature approxima- 
tion (8) for Q,,  the radius of convergence of the series for P / k T  and p is 

z s = y  -2 (9) 

and these series both converge when z = z s .  Indeed, at very low tem- 
peratures, y is large and so both zs and p(zs) are very small, approximately 
y-2,  so that the approximation we started with, the neglect of interactions 
between clusters, is likely to be a good one right up to the singularity and 
even beyond. 

The result (9) is compatible with the theorem of Yang and Lee, ~13) 
according to which (in our lattice gas language) the true pressure is 
analytic for zy 2 ~< 1, so that the radius of convergence of the exact series for 
the pressure is at least y - 2  

3. METASTABLE STATICS 

The cluster model leads to two very different conceptions of 
metastability, the static and the dynamic; we consider them in turn. 

Suppose z is given some value a little bigger than z s. Then the equi- 
librium cluster distribution, according to which the number of clusters per 
site is approximately Q,,z", no longer makes sense since it gives very large 
concentrations of large clusters. But if the large clusters are suppressed, 
then the above formula might still make good sense for small clusters. In 
fact, if z is only slightly greater than zs, then the successive terms of the 
series can decrease to a very small value before increasing again to infinity. 
By truncating the series at or near the smallest term, we can still use these 
series to give numerical values for P / k T  and p even though they diverge. 
This procedure corresponds to the method of "restricted ensembles ''12~ in 
the statistical mechanics of metastability. For given z > z  s let us define 
n*(z) as the value of n that minimizes Q,,z". Then we can define a "restricted 
ensemble" by forbidding clusters larger than n*. In this restricted ensemble 
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the pressure and density are given by the series (6) and (7) truncated at the 
n* term, i.e., 

P*(z) :=kT ~ O,,z" 
"~<"" (10) 

p*(z) := ~ nQ.z" 
#l <~ n* 

where the symbol := indicates a definition. 
In the low-temperature approximation for the two-dimensional lattice 

gas which leads to (8), n* is given by 

, f logy ,~2 { flU ~2 (11) 
" : t log (z l z , ) l  

which is large if/7 is large (low temperature) and z is close to zs (small super- 
saturation). 

These truncated series give the thermodynamic functions for a state of 
metastable equilibrium in the form of a polynomial of very high order. One 
expects that they can be used in the usual way to calculate the effects of pro- 
cesses (e.g., temperature changes) which are gentle enough not to destroy 
the metastable state (e.g., to violate the condition that the smallest term in 
the series be extremely small). 

4. M E T A S T A B L E  K I N E T I C S  

To understand better what it means in the above discussion to say 
that a disturbance is gentle enough not to upset the metastability, we need 
to know something about the time evolution of a metastable state. The 
simplest problem in this area is that of estimating metastable lifetimes. 

A useful model for the discussion of cluster kinetics is provided by the 
Becker-D6ring equations ~2) for c.(t), the time-dependent concentration of 
n-body clusters. These equations come from the assumption that the 
clusters obey the usual type of chemical reaction kinetics with "reaction" 

( 1-body cluster) + (n-body cluster) ~-- ((n + 1 )-body cluster) ( 12 ) 

The Becker-D6ring equations are 

dc.(t)/dt=J.-J._ l (n=2 ,  3...) 

dcl/dt=-2J 1- ~ J. 
n = 2  

(13) 
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where 

J , = a ,  c l c , - - b , + l c , + l  (n = 1, 2,...) (14) 

and the kinetic coefficients al ,  a2 ..... bE, b3 .... are constants. 
The true equilibrium states are those for which the net reaction rates 

J ,  are all zero; this is compatible with the previously assumed equilibrium 
distribution c,, = Q,,z" provided the kinetic coefficients satisfy the relation 

a , Q , , = b , , + l Q , + ~  (n = 1, 2,...) (15) 

There is an equilibrium state for every value of z up to zs. For larger values 
of zs there are instead metastable (non)equilibrium states, each of which, 
in the approximation used by Becker and D6ring, is characterized by a 
value of J,, that is independent of n. This value, call it J(z) ,  gives the rate 
of nucleation, i.e., the rate at which large clusters are being formed. The 
Becker-D6ring formula for J(z )  is (see, for example, ref. 20) 

J(z )  = 1 
,, i a,,Q,~ z ' '+ l  (16) 

An upper bound on J(z) ,  which also gives a crude approximation (up 
to a relatively unimportant factor whose order of magnitude is comparable 
with that of n*), can be obtained by replacing the series by its smallest 
term; it is 

J(z )  ~ J * ( z )  := a,,. Q,,.z"* + l (17) 

In the low-temperature approximation for a two-dimensional lattice gas, 
Eq. (8), this formula becomes 

(t3u)E ] (181 J * ( z )  ~ a,,. exp l ~ . ~ ) J  

When z is close to Zs this expression is exponentially small, so that the 
corresponding lifetime can be very long, in conformity with standard ideas 
about metastability. 

5. THREE THEOREMS 

In this section we state the main results of the paper, in the form of 
three theorems. The proofs are given in the next section. The theorems 
depend on the assumption that Q, is the Laplace transform of a function 
e g'~ [Eq. (20) below]. As noted by N. G. van Kampen (cited in ref. 6), this 
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assumption makes it possible to obtain an analytic continuation of the 
series we are interested in, by a variant of Borel's method ~lJ for the summa- 
tion of divergent power series. Some justification for this assumption is 
provided by the fact that the low-temperature approximation (8) for Q, is 
indeed a Laplace transform, by virtue of the formula cSJ 

eO,_2,,/-~)pu=i~ flU e . . . .  I~u)2/~"+2~ul du (19) 
-2pv [n(u + 2flU)3"l m 

One should be careful with such arguments, however. Bricmont 
et al. ~4~ have shown that the two series bZ z"e -~'/~ and Z z"e-Yt'/~l, where 

I-x/~'l denotes the integral part of x/~, though apparently very similar, 
define functions with completely different analytic properties: the former 
series can be analytically continued into the whole z plane apart from a 
singularity at z = 1, while the latter cannot be continued outside the unit 
circle at all. Thus even an apparently trivial change in the coefficients of the 
series can drastically change the behavior of its analytic continuation. One 
would have to prove the Laplace transform property (20) directly before 
drawing any firm conclusions about the droplet model from the theorems 
that follow. 

Theo rem 1 (After Fisher~6~). Suppose that 

Q. = e ..... e g ' l  du (n = 1, 2,...) (20) 
~0 

where u o is a constant, possibly zero, and g is a H61der continuous function 
on (Uo, oo) such that the integral ~.~ e gt"~ du converges. Then: 

(i) The series (6) has radius of convergence e "~ and its analytic 
continuation into the entire complex plane, apart from a cut on the real 
axis from e "~ to + oo, is given by 

P ( z ) =  f ?  ze-_..___~ egl,,) du (21) 
k T  o 1 -  z e - "  

(ii) I f z = x + _ i O w i t h x > e  "~ 

Im P ( z ) / k T =  +_~ exp g(log x) (22) 

and 

~J x e  - u Re P(z)  = PV - -  e g(u) du (23) 
k T  1 - x e  -~ 

where PV indicates that the Cauchy principal value of the divergent 
integral is to be taken. 
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T h e o r e m  2. If the conditions of Theorem 1 are satisfied and the 
function g either has a unique maximum at a value u2 ~ (Uo, + co) or is 
monotonical ly increasing on (Uo, + ~ )  (in which case we define u2 = + ~ )  
and if in addition g has a second derivative g" which is negative for all 
u < u  2 and is monotonical ly increasing on (Uo, u~) for some u~>uo, then 
for large positive n we have 

log Q,  < m a x [ - n u  + g(u)]  + const 
u 

and > m a x [ - n u + g ( u ) ] - � 8 9  Ig"(u*)l (24) 
u 

g(u) < min[ log  Q,, + nu] + �89 + const ,  log I g"(u)[ 
n 

= l og [m i n (Q , , e " ) ]  + �89 + const ,  log I g"(u)l 
n 

and > l o g [ m i n ( Q , , e ~ " ) ] - c o n s t  (25) 

where u* in (24) denotes the maximizing value of u, and the minimum in 
(25) is taken over positive real values of n, with Q,, defined for nonintegral 
values of n by the integral in (20). Further, when x > e "~ we have 

Im P(x +_ iO)/kT= +n min(Q,,x") e ~ +Jog Ig"tx)l) (26) 
n 

Combining Eq. (26) with (17), we see that the imaginary part of the 
analytically continued P(z)/kT and the metastable decay rate are indeed 
proport ional  up to relatively unimportant  factors proport ional  to powers 
of  n and g"(x). One cannot  expect a much more precise correspondence, 
because the metastable decay rate is not fully determined by the quasi- 
equilibrium features studied here: it also depends on the kinetics of the 
model. 

T h e o r e m  3. If the conditions of Theorem 2 are satisfied, and if in 
addition 

g'(u)(u-~o) 
log I(u - Uo)- 1 log coth((u - uo)/4)l 

�9 + ~  as u ~ Uo (27) 

and there exists a number  A such that 

Ig"(u)/g'(u)l < A / ( u - u o )  as u ~ Uo (28) 
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then we have 
n * - - |  

R e P ( x + _ i O ) / k T =  ~. Q , x ~ + O Q , . x  "" 
n = l  

where 0 ~< 0 ~< 1 and n* is a number  satisfying 

n * = m * ( x ) [ l  + o(1)]  as 

where 

(29) 

x x~ z, (30) 

m * ( x )  := g ' ( log x) (31) 

and o(1) means a quanti ty which approaches  the limit zero. 

By differentiating Eq. (24), it can be seen that  the smallest term of the 
divergent series (6) is about  the m*(x)th,  and so the result of Theorem 3 
has the interpretation that  this series gives a good approximat ion  to 
Re P ( x  + i O ) / k T  if it is truncated near its smallest term. 

All the conditions of these theorems are satisfied by the low-temperature  
approximat ion  used in (8). 

6. PROOFS OF THE T H E O R E M S  

P r o o f  o f  T h e o r e m  1. From (20) it follows that Q ,  ~< e ..... 0 I~o eg(,,) du 

and hence that  the series (6) converges absolutely when Izl < e  u~ Sub- 
stituting (20) into (6), we find that  

P ( z )  _ _ z"  e ..... + g~") du  
k T  ,,= 1 o 

= z " e - " "  + g(") du 
tO t l  = 1 

f o r  z e  -_____~u e g(u) d u  (32) 
J, ~o 1 - -  z e  - u 

The interchange of summat ion  and integration is justified provided that  
Izl < e "~ and so the formula is valid throughout  the circle of convergence 
of the series in (6). However,  the integral on the right defines a function 
which is analytic in the entire complex z-plane apar t  f rom a cut along the 
real axis from e "~ i.e., z~., to + or. Thus Eq. (32) provides the analytic con- 
t inuation of P(z )  into this cut plane, completing the proof  of (21). F rom 
now on we take P ( z ) / k T  to stand for this analytically continued function. 

The fact that  the radius of convergence of the series is precisely e "~ 
now follows from the fact that  the cut begins at z = e "~ 
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To prove the second part  of the theorem, we make the change of 
variable w = e" in (21) so that it takes the form 

P(z) I f  zeg~I~ w) dw 
k T  = .o w - z  w (33) 

Then (22) and (23) follow from the Plemelj formula, 12~) which is applicable 
since g is H61der continuous, giving in our case 

1 lim P ( x + i l y l )  P V I  ~xeg~176  }-iTre gtl~ 
kT.,,~o - de.o w - x  w - 

(34) 

This completes the proof  of Theorem 1. II 

Proof o[ Theorem 2. We may without loss of generality assume that 
u~ < u2. The conditions on g imply that 

g'(u)>O and g'(u)<O if u<u2 (35) 

g(u) ~ g(u2) if u > uz (36) 

Given any positive n, define u* as the (unique) solution of  

g ' (u*)=n  (37) 

so that the function g ( u ) - n u  has a unique maximum when u--u*. 
Moreover,  by (35), u* decreases as n increases, and since we are taking 
u~ < u2, the number  n~ :=  g'(ul) is positive. 

To get an upper bound on Q~ we divide the integral (20) into two 
parts: 

Qn= f,il eg(u) . . . .  du + I,,~ egCu) ....  du (38) 

Since we are interested in large values of n, we may assume that n > nl,  so 
that u* < u~ and the integrand in the first term of (38) attains its maximum 
value at u*. For  the second integral we note that (35) and (36) imply 

g(u) <~ g(u 1) + (u -- ul) g'(ui ) 

= g(u l )+ (u - -u l )n t  (39) 
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by the definition of rt I . Putting these estimates into (38), we get 

f? Q, <~ (ut _ uo) eg~.*~-.U* + eel.~l-u,.~ e - C . - . , ~  du 
I 

<. e gl~'~ . . . .  *[ul  - Uo + 1/(n - n 1)] (40) 

The last line follows by the definition of n, and the fact that the function 
g ( u ) - n u  is smaller when u = u~ than it is at its maximum, u = u*. This 
provides the upper bound on (2,, needed for (24). 

For the lower bound we start again from (20). Using (37) in the 
Taylor expansion of g(u)  about u*, we obtain, since g" is monotonically 
increasing on (uo. ut) and the integrand is nonnegative, 

fi" Q >~ eg~,*) . . . .  *+g"tu.)l . . . .  *~2/Z du (41) 

Now the integral Sg e-r dx, interpreted as the area under a curve, is (for 
all positive a and e) bounded below by the area of a rectangle of height 
e - m  and width min(a, 1/x/~ ). Using this estimate in (41), we get, since 
g"(u*)  is negative, 

Q,, >1 egO,*) . . . .  * - ,/2 min(ul - u*, 1 /~/]g"(u*)])  (42) 

To estimate u t -  u*, we note that the monotonic increase of g" implies 

g ' (u , )  >1 g ' (u*)  + (u, - u*) g"(u*)  (43) 

so that, since g"(u*)  is negative, 

u , -  u* >1 ( g ' (u*  ) - g ' (u ,  ))/I g"(u*)l 

= (n - n, ) /[g"(u*)l  (44) 

Combining (42) and (44), we get the lower bound on Q, necessary to 
complete the proof of (24). 

To prove (25), let ~(u) be any function that is concave on the whole 
of (uo, oo) and coincides with g(u)  in all the places where we are requiring 
g to be concave, i.e., on (Uo, u2): 

~(u)  = g(u)  (u ~ (Uo, u2)) (45) 

Let h and /~ be the Legendre transforms of g and ~, defined by 

h(x )  := m a x [ - x u  + g(u)] (46) 
u 

/~(x) := max[ - x u  + ~(u)] (47) 
u 
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These two functions coincide for those values of x where the maximizing 
values of u in the two defining formulas are less than u2, that is, for x > 0. 
Since g is concave, we have, by the duality theorem for convex func- 
tions, 114,8) 

~(u) = min [xu  +/~(x)]  (48) 
x 

This formula is true for all u s  (Uo, oo). For  u s  (u0, u2) we know also that 
g(u) = ~(u), and hence, since the minimizing value of x is positive, that  
h(x) =/~(x) at the minimum;  thus we obtain 

g(u)=min[xu+h(x)] (uS(uo, u2)) (49) 
x 

Combining (49), (46), and (24), we complete the proof  of (25). Then 
Eq. (26) follows immediately from (25) and (22). II 

Proof of Theorem 3. The error in replacing P(x +_ iO), as given by 
(23), by the first m terms of the series (6), with Q,  given by (20), is 

P(x+_iO) ~ Q"=PVI?(xe -" )m+l  . . . . . .  e g(u) du 
. = l k T  o 1 - x e  -~ 

I 2  e-("+ u2)v 
e gl'" + ~ dv (50) 

= P V  _ e 0/2 - e -  v/2 

where u* := log x, v := u -  u*, and e ~t") is defined to be 0 for u < Uo. The 
integral is a monotonic  decreasing function of m; we shall estimate the 
value of m at which this function passes through the value zero. 

We first convert  to a normal  integral by subtracting from both sides 
e gtu') times the integral PV S dr~( e~ e-V/2)' which is zero by symmetry.  
Denot ing the right side of (50) by I(m), this gives 

f 
~ eg(U* +V) - (m+ l / 2 ) v _e g (u* )  

I(m) = eel2 _ e_V/2 dv (51) 
- -  o o  

We can write this integral in the form I+ + I ,  as the sum of the contribu- 
tions of positive and negative values of  v. 

To  obtain upper  and lower bounds  on these integrals, let the numbers  
u +, u_ satisfy 

U o < U _  < u * < u +  < u  I (52) 

and define 

m_  := g ' (u_) ,  m* := g '(u*),  m+ := g ' ( u + )  (53) 
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where the prime denotes a derivative. By the concavity of the function g, 
the ordering of these numbers is 

m+ <~m*<m (54) 

The concavity of g also implies 

g ( u * + v ) < ~ g ( u * ) + m * v  ( - - ~ < v < ~ )  

g(u* + v) >1 g(u*) + g'(u* + v) v 

> ~ g ( u , ) + m + v  (O<~v<~v+) 

g ( u * + v ) > ~ g ( u , ) + m  v (v_<.v<~O) 

(55) 

where v+ := u + - u * .  Using this last set of inequalities in the integrals I+ 
and I_ ,  we obtain the following estimates: 

I+ < e e(u*) ~ c  e(m*e v/2-m-- el/2)0- 0]2-- l 

~< e~(,,.) I :  e - ~  
eV7~ e ~ / :  dv 

= _2egO,*) 

>eg(U.)[ f  0+ e ( . . . .  - m - l / 2 ) v l  
I+  LJo e ~ - -  e - 0/2 

dv if m * - m - l < 0  

1 
if m * - m - ~ < - I  

dv - dv 
+ e ~  

> e~(..) (e c .... - .... 1)O_e-O/2) dv - -  
0+ e ~ - -  e-~ 

(m+ m 

[ e ~ .... --m--l,o+/2 2(1 e - " + / 2 ) - - l o g c o t h 4 1  > e  glu*l o+ -- -- 

(56) 

(57) 

since S x e "x dx > X e  ~'x/2 for all positive ct, X. By analogous methods, we also 
obtain 

io e"" '/2)v-1 ..... ( ] ) I > d v > 2 e  g~"~ m * - m - ~ >  1 (58) 
- o=,  e v / 2  _ e - 0/2 

i _ < e g ( , , * ) I _ l v _ l e (  . . . . . .  ) ~o-t/z + 2(1 _ e -  Io-I/2) + log coth ~ . ~  ] (59) 
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Combining  (56) and (59) gives the upper  bound,  valid when m >  
m a x ( m _  - 1/2, m* + 1/2), 

I ( m ) < e g ' U " [ - I v _ l e  I . . . .  I 1~-1/2- 2e-lV-I/z + log coth ~ - ~ ]  (60) 

while (57) and (58) give a lower bound,  valid when m < m i n ( m + -  1/2, 
m* - 3/2), 

I ( m ) > e  g~~ v+ e("+-"-l~v§ + 2e-V+/E-log coth--~- (61) 

Condi t ion (27) of the theorem can be written 

lira g'(u) f ( u - u o ) =  +oe (62) 
u ' ~  u 0 

where 

u -- Uo (63) 
f ( u  -- Uo) := log I(u -- Uo)-1 log coth((u - u0)/4)l 

By virtue of (62) and the fact that  g ' ( u ) ~  Go a n d f ( u ) ~ 0  as u - u o ~  0 it 
is possible to find positive numbers  M, V depending on u in such a way 
that  

M(u)/g'(u) ~ 0 as u "~ Uo (64) 

V(u)/(u - Uo) ~ 0 (65) 

M(u) f ( V ( u ) ) ~  + ~  (66) 

For  example,  we could choose M, V so that  M ( u ) : = [ g ' ( u ) ]  2/3 
[ f (u  - uo)] - 1/3 and f (V(u ) )  := [ f (u  - Uo)] 2/3 [ g ' ( u ) ]  -1/3. 

In the upper  bounds (60) and (61), take 

v+ = V(u*), v_ = - V ( u * )  (67) 

and m_+ = g'(uo+v+_) as in (53). This gives, with the help of (66), 

I(m _ + M(u*) + 1 ) < e g ' * l [  - V(u*) e M~'~ vl~*~ + log coth( V(u*)/4)] 

< 0  for small enough ( u * - u o )  (68) 

In a similar way, we also obtain 

I ( m + - M ( u * ) + l ) > O  for small enough ( u * - u o )  (69) 

822/78/I-2-20 
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Since I is a decreasing function of m, it has at most one zero; the above 
inequalities show that this zero lies between m + - M ( u * ) +  1 and m + 
M(u*)+ 1. We take the n* in the statement of the theorem to be the next 
integer after this zero; then the error in replacing P(x + iO) by the series (6) 
truncated at the n*th term is positive and is at most equal to the last term 
included, as stated in the theorem. 

It remains to prove (30), i.e., that (m_ + M(u*)+ 1 ) - m *  and m * -  
(m+ - M(u*) + 1) are o(m*). From (64) we known that M(u*) = o(m*), 
To show that m_ - m *  and m * - m +  are o(m*), we can argue as follows: 

~1 u+ 
0 < m _  - m +  -=- [ - -g"(u)]  du 

1_ 

< f"+ Ag'(u) du by (28), since g" < 0, g' > 0 
J, ~_ U - -  U 0 

Ag'(u_)(u§ -u_) 
< by concavity 

U - -  U o 

2 A m  V(u*) 
by (53) and (67) (70) 

- u *  - Uo - V ( u * )  

This can be rearranged to give 

m _ 2 A  V ( u *  ) 

m---+ I < u * - u o - ( 1  +2A)  V(u*) (71) 

The left side is nonnegative, by (54), and the right side tends to zero as 
x "~ z~., by (65); it follows, again using (54), that 

m _ - m + = o ( m * )  sothat  m _ - m * = o ( m * ) ,  m * - m + = o ( m * )  (72) 

Combining this result with (64), we obtain the desired results 

( m  _ + M ( u * )  + 1 ) - m *  = ( m  - m * )  + M ( u * )  + 1 = o ( m * )  
(73) 

m *  - -  ( m  + - -  M ( u *  ) + 1 ) = ( m *  - m + ) + M ( u * )  + 1 = o ( m * )  

This completes the proof of Theorem 3. II 
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